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A neural fuzzy model based on adaptive network-based fuzzy inference system (ANFIS) was proposed in
terms of on-line input variables CH4%, Qgas, Qanarecycle, Qinf-bypass and Qinf to estimate the effluent chemical
oxygen demand, CODeff, of a real scale unsteady anaerobic wastewater treatment plant of a sugar factory.

Two new variables were added into the input variables matrix of the model; phase vectors of the plant
operation and the history of effluent COD values in order to increase the fitness of simulated results. ANFIS
naerobic wastewater treatment
daptive network-based fuzzy inference
ystem
odeling
n-line variables

was able to estimate the water quality discharge parameter with success for the case when only limited
on-line variables were available without requiring the measurement of inlet COD. Acceptable correlation
coefficient (0.8354) and root mean square error (0.1247) were found between estimated and measured
values of the system output variable, effluent COD, in the case of excluding inlet volumetric flow rate of
the wastewater treatment plant from the on-line input variable matrix. The developed ANFIS model may
be integrated into an advanced control system for the anaerobic treatment plant using different control

rk.

fl
i
a
a
a
a
t
r
s
p

m
t
t
m
s

strategies with further wo

. Introduction

Discharge of inadequately treated wastewater either from
ndustrial or municipal sources leads to serious ecological problems
n receiving waterways. For high removal efficiency, wastewaters

ith a high chemical oxygen demand, COD, can be treated in an
naerobic digestion process, in which biodegradable organic mate-
ials are eventually decomposed to mainly methane in the absence
f oxygen. Anaerobic digestion has several advantages compared
o the traditional aerobic treatment; high capacity to degrade diffi-
ult substrates at high concentrations, very low sludge production,
ow energy requirements and energy recovery through methane
ombustion [1]. Anaerobic digestion is generally considered a
on-linear, time varying three-stage process, which depends on a
ynergistic relationship of bacterial populations and is influenced
y physico-chemical conditions and the process in the reactor

2]. Anaerobic wastewater treatment plants are normally designed
ith reference to nominal operating conditions where the load-

ng rate is assumed constant. However, in practice, the steady state
ssumption is seldom met and in fact, the process is subject to wide

∗ Corresponding author. Tel.: +90 312 297 74 04; fax: +90 312 299 21 24.
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uctuations, both in flow and organic loading, which often results
n corrupted performance or even plant failure. The successful man-
gement of these critical situations is of high relevance to industrial
pplications. This requires the solution of a complex control design,
ssuming that on-line information about the quality of the plant is
vailable and that the plant is equipped with flow control devices
o alter the flow patterns [3]. Moreover, the sensitivity of anaerobic
eactors means that they need to be supervised by the plant per-
onnel, especially when a process control system is run up in a new
lant.

The control of anaerobic processes may be difficult due to two
ain reasons. First, there is no precise mathematical models for

hese complex systems, in which the interactions among the mul-
iple microbial species are not understood exactly [4]. Second, there

ay be a significant delay before an alteration in the state of the
ystem is stemmed from some significant changes in macroscopic
rocess variables susceptible to easy measurements [4].

A common trend in modeling studies is to identify a model,
uitable for on-line estimation and forecasting, providing accu-

ate predictions of digester behavior, which will be sufficient for
se in process control and controller design. There are numerous
omprehensive mathematical models of anaerobic treatment sys-
ems in literature as reviewed by Harper and Suidan [5]. Of these,
inetic models are among the most widely used ones, however,

http://www.sciencedirect.com/science/journal/13858947
mailto:tanyolac@hacettepe.edu.tr
dx.doi.org/10.1016/j.cej.2008.03.008
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any of them are very complex, often analytically insolvable, and
ot routinely useful in control applications. For instance, although
he advanced structured models for anaerobic processes have some
dvantages, there are too many kinetic parameters to determine,
hich, in fact, are highly dependent on specific environmental con-
itions [6].

One of the most frequent and important challenges in the control
f biochemical processes is to find adequate and reliable sensors
o measure all important state variables of the plant. However,
f a number of on-line sensors providing state information are
oday available at industrial scale, they are still very expensive and
heir maintenance is usually time consuming. In order to overcome
hese difficulties, the notation of software sensors has been intro-
uced, which simply consists of using state estimation techniques
o predict the values of unmeasured variables from the available
n-line measurements [7,8]. Under the name of soft computing;
heories, approaches and techniques are gathered to find solutions
o a wide variety of problems such as pattern recognition, sys-
em control, prediction, optimization and others which share same
haracteristics of nonlinear nature, missing or disturbed data by
oise, imprecision or uncertainty. Moreover, the sources of these
ata can be very heterogeneous, ranging from discrete to continu-
us variables, and include a spatial or temporal component. When
ackling a real-world problem, it turns out that they are mostly par-
ial and, sometimes, ill defined, difficult to model and the solutions
re lost in huge search spaces. Now, precise models are impractical
o use, costly, or simply non-existent. This makes soft computing
pproaches a flexible means to deal with such problems [9].

Over the last decade, significant advances have been made in
wo distinct technological areas; fuzzy logic and computational
eural networks. The theory of fuzzy logic provides a mathemati-
al framework to capture the uncertainties associated with human
ognitive processes, such as thinking and reasoning. On the other
and, the computational neural network paradigms have evolved in
he process of understanding the learning and adaptive features of
eural mechanisms inherent in certain biological species. The inte-
ration of two fields has created an emerging technological field
f the fuzzy neural networks. Since fuzzy set theory and neural
etworks were applied to anaerobic digestion in the 1980s, fuzzy
nd neural models have shown great advantages in the simula-
ion, prediction and controlling of the anaerobic treatment systems.
daptive network-based fuzzy inference system, ANFIS, proposed
y Jang [10–13], is an integrated technique which was first applied
o the anaerobic wastewater treatment system by Tay and Zhang
6,14].
In this study, a neural fuzzy model based on ANFIS was proposed
or a real scale industrial anaerobic treatment plant (anaerobic

ethane production, ANAMET) operating at unsteady state to esti-
ate the discharge variable (lamella clarifier effluent COD) by using

nly appropriate on-line input variables. Evaluation of ANFIS mod-

t
k
a
t
o

able 1
haracteristics of wastewater fed to the wastewater treatment plant in different periods o

astewater parameters Average characteristics of
wastewater at start-up
period (1–33 days)

Average characteristics
wastewater in pseudo-
state period (34–149 da

inf (m3/day) 1267.64 4009.53
OD (mg/L) 9069.85 4651.96
H 4.62 6.01
FA (mg HAc/L) 642.86 2318.24
tot (mg/L) 68.36 50.26
H4–N (mg/L) 13.60 12.59
tot (mg/L) 1.40 2.31
O4–P (mg/L) 0.67 1.49
SS (mg/L) 84.57 392.62
SS (mg/L) 71.50 189.62
ring Journal 145 (2008) 78–85 79

ling with only on-line input variables for the operation of a real
cale anaerobic wastewater treatment plant was studied for the
rst time in literature. In order to create a possibility for integrat-

ng model results into the decision making unit of the advanced
rocess control and to reduce the computational time, only avail-
ble on-line process variables in the process were directly used to
evelop a simple and realistic model which did not include any

nformation about the inflow COD concentrations of the plant.

. Materials and methods

.1. Process configuration

The sugar beet processing factory (Ereğli, Turkey) has an actual
apacity of 8000 tones of beet per day. The factory wastewater
onsists of two main streams; one is the mixture of flume (beet
ransportation water) and washing water and the second is the
astewater from miscellaneous use of water in the process. Water

rom soil settlement lagoons and miscellaneous use were balanced
n the equalization basin from where pumped to the treatment
lant for the removal of COD and nitrogenous compounds prior
o reuse and discharge. Characteristics of wastewater fed to the
astewater treatment plant are presented in Table 1. All data in

able 1 are average values of wastewater parameters obtained from
he daily composite samples. Operation period of wastewater treat-

ent plant was divided into three phases based on COD loading.
eriod of first 33 days was called start-up, the period between the
ays 34 and 149 was defined as pseudo-steady state phase and last
2 days (150–192 days) was described as the end phase of the oper-
tion period. Furthermore, average values of the wastewater fed to
he wastewater treatment plant during full operation period were
resented in the last column of Table 1.

The treatment complex is a full-scale ANAMET type plant which
onsists of sequential anaerobic and aerobic biological treatment
nits. Anaerobic unit includes hydrolysis and anaerobic tanks,
hich are totally mixed reactors, and a lamella type sludge separa-

ion system. The ANAMET plant was designed for a wastewater flow
f 4680 m3/day and a COD load of 37,500 kg/day. Process scheme
f anaerobic wastewater treatment plant is presented in Fig. 1.
verage treatment efficiency of the anaerobic unit based on COD
emoval was realized as 97% during the operation period.

.2. Model architecture and components

ANFIS is a technique for automatically tuning first-order Sugeno

ype inference systems based on training data [10]. It consists of five
ey components; inputs and outputs, database and preprocessor,
fuzzy system generator, a fuzzy inference system, and an adap-

ive neural network representing the fuzzy system [6]. Input and
utput variables are selected or generated from the variables com-

f operation

of
steady
ys)

Average characteristics of
wastewater in the end
period (150–192 days)

Overall average values of full
operation period (1–192 days)

2082.56 3107.00
7506.35 6050.55

6.43 5.89
4874.52 2643.26

22.71 44.94
8.78 11.90
2.28 2.24
2.00 1.52

1075.58 497.00
618.21 283.10
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(MF) of the inputs were characterized as Gaussian MFs and MFs of
the outputs were specified linear.

The resulting model was verified by using a validation database
provided by the normalized database. If the resulting fuzzy system
ig. 1. Process scheme of anaerobic wastewater treatment plant, ANAMET: (1) waste
ank, (5) biogas to burner, (6) anaerobic tank, (7) lamella settler, (8) anaerobic sludg
edimentation, (12) aerobic sludge recycle line, (13) excess sludge line and (14) disc

only used for system description. Database containing system
erformance information is a prerequisite for the model develop-
ent. Generally, it is developed by collecting the data of regularly
onitored variables. Since the ANFIS is usually started with a

rototype fuzzy system, a fuzzy system generator is needed. The
oftware MATLAB (Matworks Inc.) provides this function. Tay and
hang [6] used MATLAB for model programming and they proved
hat the MATLAB language is suitable for the programming of the

odel.

.3. Model implementation

Water quality data of 192 days from the treatment plant were
sed to derive the models. Daily composite samples were formed
y collecting samples from lamella outlet every 2 h and raw data
f COD analysis and on-line variables were normalized between 0
nd 1 structure and formatted in Excel 7.0.

These normalized values were used to form the original
atabase that serves the training and validation database for ANFIS.

n the modeling study, the data of 129 days were used for training
nd the remaining data of 63 days were reserved for validation.
s stated by El-Mansi and Bryce [15], selection of the data in the

raining and validation sets can be carried out either randomly or
tatistically depending on the design employed. In our study, train-
ng and validation data were selected randomly from the whole
ata set of 192 days using a macro written in Excel 7.0 program.

The software Matlab 6 (The Matworks Inc. Natick, MA) and the
uzzy logic toolbox (Version 2.1) were used to derive the model
hat assist the user in designing a Sugeno fuzzy system prototype
or each trial from training data. The function “genfis 2” was applied
o generate a first-order Sugeno fuzzy inference system (FIS) using
ubtractive clustering of the data set provided. Subtractive clus-
ering, a technique for automatically generating FIS by detecting
lusters in input–output training data, assumes each data point as
potential cluster center and calculates a measure of the likelihood

hat each data point would define the cluster center, based on the
ensity of surrounding data points. Default values for range of influ-
nce (radius), squash factor, accept ratio and reject ratio in genfis 2
ere selected as 0.5, 1.25, 0.5 and 0.15, respectively.

Once a fuzzy system prototype is available, the ANFIS algorithm
unes and optimizes the fuzzy system by learning from the training
ata and finally produces a Sugeno fuzzy system with the same

tructure as prototype. Schematic diagram of ANFIS models with
ll input variables and, input–output mapping structure with only
n-line variables were presented in Fig. 2(a) and (b), respectively.
hecking data option in ANFIS was used in all models in order to
revent the model from overfitting.

F
i

from sugar factory, (2) equalization basin, (3) bypass to aerobic unit, (4) hydrolysis
cle line, (9) excess sludge line, (10) denitrification and nitrification tank, (11) final

.

Operators used in automatically tuning Sugeno fuzzy system;
ND method is product, OR method is probabilistic OR, defuzzifi-
ation method is weighed average, implication method is minimum
nd aggregation method is maximum. The membership functions
ig. 2. Schematic diagram of (a) ANFIS models with all input variables and (b)
nput–output mapping structure of ANFIS model with only on-line input variables.
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Table 2
Selected on-line input variables available in the wastewater treatment plant and
operational ranges for model solutions

Input variables Unit Determination Minimum Maximum Overall
average

Qinf m3/day On-line 218 4,856 3107
Qinf-bypass m3/day On-line 218 4,768 3003
Q
Q
C

i
m
T
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stimates satisfactorily the validation data, then the computation
as terminated.

.4. Determination of input–output variables

Lamella clarifier effluent COD was chosen as the output variable
f the model in our study. Since the temperature in anaer-
bic tank was kept at approximately 35 ◦C during the whole
peration period, temperature was not accounted as a vari-
ble in the model as previously stated by Tay and Zhang [6].
H was also not regarded as a model variable as suggested
y Weiland and Rozzi [16], because fluctuations in pH during
peration is quite negligible. Volumetric flow rate of wastew-
ter was measured by electromagnetic flow meters (Danfoss
agFlo). Gas flow rate was measured by a Bailey Fischer Porter

ortex flow-meter. Gas composition of the biogas was deter-
ined by an on-line Varian Micro GC. Programmable logic

ontrol (PLC) and a TEOS 32 supervisory control and data
cquisition (SCADA), systems were used to monitor and con-

rol the anaerobic wastewater treatment plant. Every 5 min,
astewater and gas flow rates and CH4 content of biogas
ere read from TEOS 32 SCADA system to yield average daily

alues. COD analysis of the lamella outlet was carried out
ff-line according to a standard method [17]. Selected on-line

c
t
i
r
v

Fig. 3. Time profiles of (a) Qinf, (b) Qanarecycle, (c) Q
anarecycle m3/day On-line 754 7,852 4631
gas m3/day On-line 150 20,325 9458
H4 % (v/v) On-line 57.68 71.59 65.95

nput variables available in the wastewater treatment plant for
odel solutions along with operational ranges are presented in

able 2.

. Results and discussions

For the treatment period, time profiles of inlet volumetric flow
ate of the wastewater treatment plant, Qinf, anaerobic sludge recy-

le flow rate, Qanarecycle, 0inlet volumetric flow rate of the anaerobic
ank, Qinf-bypass, produced volumetric gas flow rate, Qgas, COD in
nfluent, CODinf, and in effluent, CODeff, are presented in Fig. 3(a)–(f),
espectively. In the figures, the on-line variables as well as COD
alues fluctuated within wide ranges showing unsteady nature of

inf-bypass, (d) Qgas, (e) CODinf and (f) CODeff .
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Table 3
Evaluation of on-line input variables with the inclusion of two-valued phase vector and history of last 5 days

Excluded variable Training (fuzout 2/dataout) Validation (valid fuzout 2/valid dataout)

RMSE R RMSE R

None 1.9476E−005 1.0 0.1522 0.8097
History of 5 days 0.0334 0.9874 0.1471 0.8011
Phase vector (two-valued) 6.5211E−005 1.0 0.1924 0.6824
CH4 3.3658E−004 1.0 0.2293 0.6897
Q
Q
Q
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variables were excluded from on-line input variables matrix, cor-
relation coefficients were dropped down to 0.6321, 0.6821, 0.6824,
and 0.6846, respectively, showing the effective weight of Qinf. In the
second case, best correlation coefficient was obtained as 0.7982,
gas 0.0055
anarecycle 0.0404
inf-bypass 1.0673E−004
inf 7.9758E−005

NAMET plant. During the last 6 years of operation, plant did not
xperience any process failure or any imbalance occurrence. There-
ore, in our work developed ANFIS models could not be trained
ith the data representing process failure occurrences such as

rganic or hydraulic overload, total shutdown or washout of the
eactor.

Only available on-line process variables CH4%, Qgas, Qanarecycle,
inf-bypass and Qinf in Table 2 were used so as to create a simple
nd realistic model for the advanced process control of the treat-
ent unit minimizing the complexity and the computation time.
stepwise approach was applied in this study to determine the

ndividual effects of input variables on the estimation of output
ariable value. In the approach, separate networks were trained for
ach new case, which was formed by dropping one of the input
ariables sequentially while the others are kept in input variable
atrix. Effect of each input variable on the estimation performance

f resulting model is determined by evaluating the measured and
stimated results via root mean squared error, RMSE, and correla-
ion coefficient, R.

The features of phase vector of the plant operation and recent
alues of the output variable (history of last 5 days for effluent
OD) were also included in model prediction/parameter evalua-
ion studies mainly due to the success in our previous work of
NFIS modeling [18]. Two-valued phase vector differentiated start-
p (0) and pseudo-steady state phases (1) and, the three-valued
hase vector represented start-up (0), pseudo-steady state (0.5)
nd end phases (1) of the full operation period of the treatment
lant. Recent values of the output variable covered the last 5 days
ince the hydraulic retention time of the wastewater stream within
he treatment plant is approximately 5 days. The inclusion of recent
alues of the output variable within the matrix was expected to
liminate the dead band of the system, therefore increasing the
ccuracy of the model prediction.

In the first case, two-valued phase vector (0–1) and the history of
ast 5 days were integrated into on-line input variables matrix of the

odel and evaluation of the models are presented in Table 3. In this
able, “dataout” and “valid dataout” are the measured output values
effluent COD values) of the system to be used for training and val-
dation sets, respectively. The terms “fuzout 2” and “valid fuzout
” are predicted ANFIS results as “dataout” and “valid dataout”,
espectively generated from the FIS after the training step with 200
terations. General assessment of the model success was essentially
ased on validation results after training.

In Table 3, RMSE and R values were obtained as 0.1522 and
.8097, respectively with the addition of two-valued phase vec-
or and the history of last 5 days in on-line input variable matrix
ontaining all on-line variables. When Qanarecycle, two valued phase

ector and CH4% variables were excluded from the input vari-
bles matrix one at a time, correlation coefficients were calculated
.6690, 0.6824, and 0.6897, respectively. Clearly, exclusion of these
ariables presented considerable drop in correlation coefficient.
lso, individual absence of Qgas resulted in a very low correlation

F
o
t

0.9997 0.2844 0.6290
0.9815 0.2049 0.6690
1.0 0.1945 0.7514
1.0 0.1651 0.7887

oefficient (0.6290) and a high error of RMSE (0.2844), denoting
he high contribution of this parameter. Similarly, Qinf-bypass is more
ffective parameter than Qinf when compared the correlation coef-
cients 0.7887 and 0.7514, respectively, because anaerobic unit
erformance is directly related to feed rate to the reactor as indi-
ated also by Qgas.

Validation pattern of estimated and measured composite values
f system output variable of normalized chemical oxygen demand
CODnorm) for the best model of Table 3 are shown as a function
f time in Fig. 4 after the training step. Considering the fact that
nput variable matrix is constructed of only a few on-line variables,

hich in fact did not possess any information about the progress
f the biological digestion except Qgas, the prediction performance
f the model was quite acceptable.

In the second case, three-valued phase (0–0.5–1) vector and
ecent values of output variable for last 5 days were again added
o the on-line input variables matrix of the model and step-wise
valuation of all input variables is presented in Table 4.

In Table 4, correlation coefficient for the model including three-
alued phase vector, the history of last 5 days and all on-line
ariables decreased to 0.7670 from previous 0.8097 attained in
able 3 and accordingly the RMSE increased. Interestingly when Qinf
as omitted from the input variables matrix, correlation coefficient
as found as 0.6321 showing the importance of this parameter in

his case. When Qinf, Qgas, three valued phase vector and Qanarecycle
ig. 4. Validation pattern of variations of estimated and measured values of system
utput variable CODnorm with time after training step from the model including
wo-valued phase vector, history of last 5 days and all on-line variables.
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ig. 5. Validation pattern of variations of estimated and measured values of system
utput variable CODnorm with time after training from the model excluding history
f last 5 days but including three-valued phase vector and all on-line variables.

hen history of last 5 days variable was expelled from the on-line
nput variable matrix.

In both cases, exclusion of two and three-valued phase vectors
rom the matrix yielded lower correlation coefficients than when
istory variable excluded, explaining the working nature of treat-
ent plant in different phases of sugar processing operation period.

or validation after training step, estimated and measured com-
osite values of system output variable CODnorm as a function of
ime is graphed in Fig. 5 for the case excluding of history of last
days variable but the rest. As a general trend in Fig. 5, peak val-

es around unity cannot be represented by the model adequately,
hich is quite a common case for similar simulation studies [19].

For the last case, in order to assess the pure contribution of on-
ine input variables, only on-line variables were used in the variable
atrix. For this case, model assessment of on-line input variables
s presented in Table 5.

In Table 5 with all on-line input variables, RMSE and R between
stimated and measured CODnorm values were found 0.1431 and
.8115, respectively, having a better fit than previous two cases.

a
c
t
o

able 4
valuation of on-line input variables with the inclusion of three-valued phase vector and

xcluded variable Training (fuzout 2/dataout)

RMSE

one 2.3691E−005
istory of 5 days 0.0382
hase vector (three-valued) 6.5211E−005
H4 3.5532E−004
gas 0.049
anarecycle 0.0394
inf-bypass 6.9030E−005
inf 5.2030E−004

able 5
valuation of only on-line input variables

xcluded variable Training (fuzout 2/dataout)

RMSE R

one 0.0462 0.9757
H4 0.0608 0.9576
gas 0.1010 0.8781
anarecycle 0.0955 0.8918
inf-bypass 0.0556 0.9646
inf 0.0816 0.9222
ig. 6. Validation pattern of variations of estimated and measured values of system
utput variable CODnorm with time after training step from the model including only
n-line variables except Qinf.

urthermore, the exclusion of Qanarecycle yielded a correlation coef-
cient 0.8114, which was not significantly smaller than 0.8115 for
he model containing all on-line variables, denoting that Qanarecycle
s a weak parameter in the on-line input variable matrix. In the
able, when Qinf-bypass, Qgas and, CH4% variables were omitted one at
time from the input variables matrix, correlation coefficients were
ropped to 0.7779, 0.7952 and 0.7962, respectively. These variables
re directly related to anaerobic reactor performance and therefore
ust be kept in the model.
Out of three cases evaluated in this study, the case with only

n-line variables excluding Qinf yielded the highest R (0.8354) and
mallest RMSE (0.1247). For validation, after training step of the
hird case excluding Qinf estimated and measured composite values
f CODnorm is depicted in Fig. 6.
Considering the fact that limited number of on-line input vari-
bles (4) was used in the variable matrix and the matrix did not
ontain any information about the wastewater inlet COD concen-
ration, acquired RMSE of 0.1247 and R of 0.8354 in Fig. 6 were
f acceptable level of fit. The addition of two- and three-valued

history of last 5 days

Validation (valid fuzout 2/valid dataout)

R RMSE R

1.0 0.1969 0.7670
0.9835 0.1513 0.7982
1.0 0.1924 0.6824
1.0 0.2326 0.7465
0.9997 0.2346 0.6821
0.9824 0.2065 0.6846
1.0 0.1613 0.7851
1.0 0.2440 0.6321

Validation (valid fuzout 2/valid dataout)

RMSE R

0.1431 0.8115
0.1418 0.7962
0.1372 0.7952
0.1316 0.8114
0.1469 0.7779
0.1247 0.8354
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hase vector and history of last 5 days to the on-line input variable
atrix apparently did not enhance the prediction performance, in

ontrast to our previous study where all available system variables
ere used in the model [18].

In literature, there has not been any study done yet for ANFIS
odeling of a real scale anaerobic wastewater treatment with on-

ine variables to compare our results. Nevertheless, there have
een some other neural network techniques for the prediction of
erformance in wastewater treatment plants. Tomida et al. [20],
pplied recursive fuzzy neural network to predict COD effluent for
real scale activated sludge treatment plant using on-line vari-

bles of operation time, influent COD, effluent flow rate, air-flow
ate and temperature through a year, and they achieved an esti-
ation of effluent COD concentration ranging from 0 to 20 mg/L
ith an average error of 0.40 mg/L. Kim et al. [21] applied polyno-
ial neural network, PNN, and rule base compensator to estimate

he NOx–N and NH4–N concentrations of a pilot scale sequencing
atch reactor, SBR, by using only on-line values of oxidation reduc-
ion potential, dissolved oxygen and pH as on-line input variables,
nd they obtained estimations for NOx–N (0–120 mg/L) and NH4–N
0–80 mg/L) with RMSEs in the range 1.23–8.4 and 2.54–11.22,
espectively, depending on loading rate. Grieu et al. [22] proposed

procedure based on a multi-layer perceptron neural network
o obtain on-line estimation of influent and effluent concentra-
ions of COD and NH4 for a real scale activated sludge wastewater
reatment plant. Using on-line variables of influent flow rate, air-
ow rate and dissolved oxygen concentration together with off-line
arameters, they estimated effluent concentration of COD and NH4
ith average relative errors in the range 6.6–15.2%. Holubar et

l. [23,24] demonstrated that pH, volatile fatty acid, acetic acid,
ropionic acid, gas from the 20 L laboratory scale anaerobic CSTR
rocess can be effectively modeled by the feed forward back prop-
gation, FFBP, neural network. Three to nine input variables were
sed to estimate the parameters within a regression coefficient
ange of 0.80–0.90, but only pH, gas production and gas compo-
ition parameters were monitored on-line in Holubar’s studies.
n their work, they achieved to develop a decision support sys-
em that contains FFBP model of anaerobic system and a searching
lgorithm.

The results of our study cannot be compared with those of the
iterature due to the different number and type of the variables,
ize, type of treatment and highly fluctuated nature of the data,
owever, prediction power of our model is not lower than those of

iterature. Conclusively, acceptable correlation coefficient of 0.8354
nd root mean square error of 0.1247 were acquired in our study
or the estimation of effluent COD using only four on-line variables,
inf-bypass, Qanarecycle, Qgas and CH4%, already measurable param-
ters of a real scale anaerobic wastewater treatment plant. This
eveloped ANFIS model may be integrated into an advanced con-
rol system for the treatment plant using different control strategies
ith further work.

. Conclusion

This paper presents a neural fuzzy model of ANFIS using only
n-line input variables of CH4%, Qgas, Qanarecycle, Qinf-bypass and Qinf
o predict effluent COD for the operation of a real scale indus-
rial anaerobic wastewater treatment plant of a sugar factory, being
rst in literature. The model did not necessitate the measurement
f COD, an off-line parameter to be determined experimentally,

nd made it possible to monitor the treatment performance of
he unit as well as operating conditions for a reliable treatment
rocess.

Two new input variables, phase vectors of the plant operation
nd the history of effluent COD, the output variable, were added into

[

[

ring Journal 145 (2008) 78–85

he input variables matrix with the anticipation of increasing the
tness of the model. However, these two descriptive variables did
ot enhance the prediction power of the model. Produced results

rom the developed ANFIS model was satisfactory for the estima-
ion of effluent COD in the case of only limited on-line variables
ere available. Acceptable correlation coefficient of 0.8354, and

oot mean square error of 0.1247 were found for the assessment
f the system output variable, effluent COD, in the case of exclud-
ng inlet volumetric flow rate of the wastewater treatment plant
rom the on-line input variable matrix. The information provided
y the prediction procedure is sufficiently reliable for the plant
onitoring and performance check. The developed ANFIS model
ay be integrated into an advanced control system of the anaero-

ic treatment plant using different control strategies with further
ork.
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